73 research outputs found

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    Phonological (un)certainty weights lexical activation

    Full text link
    Spoken word recognition involves at least two basic computations. First is matching acoustic input to phonological categories (e.g. /b/, /p/, /d/). Second is activating words consistent with those phonological categories. Here we test the hypothesis that the listener's probability distribution over lexical items is weighted by the outcome of both computations: uncertainty about phonological discretisation and the frequency of the selected word(s). To test this, we record neural responses in auditory cortex using magnetoencephalography, and model this activity as a function of the size and relative activation of lexical candidates. Our findings indicate that towards the beginning of a word, the processing system indeed weights lexical candidates by both phonological certainty and lexical frequency; however, later into the word, activation is weighted by frequency alone.Comment: 6 pages, 4 figures, accepted at: Cognitive Modeling and Computational Linguistics (CMCL) 201

    Verb Conjugation in Transformers Is Determined by Linear Encodings of Subject Number

    Full text link
    Deep architectures such as Transformers are sometimes criticized for having uninterpretable "black-box" representations. We use causal intervention analysis to show that, in fact, some linguistic features are represented in a linear, interpretable format. Specifically, we show that BERT's ability to conjugate verbs relies on a linear encoding of subject number that can be manipulated with predictable effects on conjugation accuracy. This encoding is found in the subject position at the first layer and the verb position at the last layer, but distributed across positions at middle layers, particularly when there are multiple cues to subject number.Comment: To appear in Findings of the Association for Computational Linguistics: EMNLP 202

    When a sentence does not introduce a discourse entity, Transformer-based models still sometimes refer to it

    Full text link
    Understanding longer narratives or participating in conversations requires tracking of discourse entities that have been mentioned. Indefinite noun phrases (NPs), such as 'a dog', frequently introduce discourse entities but this behavior is modulated by sentential operators such as negation. For example, 'a dog' in 'Arthur doesn't own a dog' does not introduce a discourse entity due to the presence of negation. In this work, we adapt the psycholinguistic assessment of language models paradigm to higher-level linguistic phenomena and introduce an English evaluation suite that targets the knowledge of the interactions between sentential operators and indefinite NPs. We use this evaluation suite for a fine-grained investigation of the entity tracking abilities of the Transformer-based models GPT-2 and GPT-3. We find that while the models are to a certain extent sensitive to the interactions we investigate, they are all challenged by the presence of multiple NPs and their behavior is not systematic, which suggests that even models at the scale of GPT-3 do not fully acquire basic entity tracking abilities.Comment: To appear at NAACL 202
    • …
    corecore